The influence of temperature on within-canopy acclimation and variation in leaf photosynthesis: spatial acclimation to microclimate gradients among climatically divergent Acer rubrum L. genotypes.

نویسندگان

  • William L Bauerle
  • Joseph D Bowden
  • G Geoff Wang
چکیده

Leaf gas exchange and temperature response were measured to assess temperature acclimation within a tree canopy in climatically contrasting genotypes of Acer rubrum L. Over the course of two 50 d continuous periods, growth temperature was controlled within tree crowns and the steady-state rate of leaf gas exchange was measured. Data were then modelled to calculate the influence of genotype variation and vertical distribution of physiological activity on carbon uptake. The maximal rate of Rubisco carboxylation (V(cmax)), the maximum rate of electron transport (J(max)), leaf dark respiration rate (R(d)), maximum photosynthesis (A(max)), and the CO(2) compensation point (Gamma) increased with temperature during both (i) a constant long-term (50 d) daytime temperature or (ii) ambient daytime temperature with short-term temperature control (25-38 degrees C). In addition, within-crown variation in the temperature response of photosynthesis and R(d) was influenced by acclimation to local microclimate temperature gradients. Results indicated that carbon uptake estimates could be overestimated by 22-25% if the vertical distribution of temperature gradients is disregarded. Temperature is a major factor driving photosynthetic acclimation and within-crown gas exchange variation. Thus, this study established the importance of including spatial acclimation to temperature- and provenance-, ecotype-, and/or genotype-specific parameter sets into carbon uptake models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the importance of within-canopy spatial temperature variation on transpiration predictions

Models seldom consider the effect of leaf-level biochemical acclimation to temperature when scaling forest water use. Therefore, the dependence of transpiration on temperature acclimation was investigated at the within-crown scale in climatically contrasting genotypes of Acer rubrum L., cv. October Glory (OG) and Summer Red (SR). The effects of temperature acclimation on intracanopy gradients i...

متن کامل

Growth temperature modulates the spatial variability of leaf morphology and chemical elements within crowns of climatically divergent Acer rubrum genotypes.

Our understanding of leaf acclimation in relation to temperature of fully grown or juvenile tree crowns is mainly based on research involving spatially uncontrolled growth temperature. In this study, we test the hypothesis that leaf morphology and chemical elements are modulated by within-crown growth temperature differences. We ask whether within-species variation can influence acclimation to ...

متن کامل

Separating foliar physiology from morphology reveals the relative roles of vertically structured transpiration factors within red maple crowns and limitations of larger scale models

A spatially explicit mechanistic model, MAESTRA, was used to separate key parameters affecting transpiration to provide insights into the most influential parameters for accurate predictions of within-crown and within-canopy transpiration. Once validated among Acer rubrum L. genotypes, model responses to different parameterization scenarios were scaled up to stand transpiration (expressed per u...

متن کامل

Characterization of Rubisco activase from thermally contrasting genotypes of Acer rubrum (Aceraceae).

The lability of Rubisco activase function is thought to have a major role in the decline of leaf photosynthesis under moderate heat (<35°C). To investigate this further, we characterized Rubisco activase and explored its role in the previously demonstrated thermal acclimation and inhibition of two genotypes of Acer rubrum originally collected from Florida (FL) and Minnesota (MN). When plants we...

متن کامل

Global convergence in leaf respiration from estimates of thermal acclimation across time and space.

Recent compilations of experimental and observational data have documented global temperature-dependent patterns of variation in leaf dark respiration (R), but it remains unclear whether local adjustments in respiration over time (through thermal acclimation) are consistent with the patterns in R found across geographical temperature gradients. We integrated results from two global empirical sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 58 12  شماره 

صفحات  -

تاریخ انتشار 2007